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Abstract
We study Dirac structures for generalized Courant algebroids, which are
doubles of generalized Lie bialgebroids. The cases investigated include graphs
of bivector fields and characteristic pairs of some sub-bundles.
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1. Introduction

Dirac structures on manifolds were introduced by Courant and Weinstein [2] and studied
in detail in [1]. Dirac structures include closed 2-forms, Poisson structures and foliations.
Dorfman [3] developed an algebraic treatment of these structures and used them for the study
of completely integrable systems, in the context of the calculus of variations.

The notion of Dirac structure on a manifold M, investigated by Courant in [1], is defined
using a sub-bundle L of T M⊕T ∗M , which is maximally isotropic under the natural symmetric
pairing on T M ⊕ T ∗M , and a bracket on the space of sections of T M ⊕ T ∗M , called the
Courant bracket. The existence of a Dirac structure corresponds to the closeness of that bracket
on the space �(L) of sections of L.

In order to understand the meaning of this bracket, which is not a Lie bracket on
�(T M ⊕ T ∗M), Liu et al [17] introduced the notion of a Courant algebroid on a vector
bundle whose definition includes a skew-symmetric bracket on the space of sections of that
bundle. The first example of a Courant algebroid is the Whitney sum bundle A ⊕ A∗, where
the pair (A,A∗) is a Lie bialgebroid [19]. The Courant algebroid A ⊕ A∗ is called the double
of the Lie bialgebroid (A,A∗).

For the case of the Lie bialgebroid (T M, T ∗M), where T M is the Lie algebroid whose
space of sections is endowed with the usual Lie bracket of vector fields and T ∗M is the null
Lie algebroid, the bracket on the Courant algebroid T M ⊕ T ∗M is that introduced in [1], i.e.
the Courant bracket.
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It is well known that there exists a close relation between Lie bialgebroids and Poisson
structures on manifolds. However, if we pass from the Poisson to the Jacobi setting, we have to
replace Lie bialgebroids by generalized Lie bialgebroids [6] or Jacobi bialgebroids [4]. In fact,
in contrast to the Poisson case, the pair (T M, T ∗M) is not, in general, a Lie bialgebroid if M
is a Jacobi manifold. Canonically associated with a Jacobi manifold M, there is a generalized
Lie bialgebroid structure on (T M × R, T ∗M × R). In [26], Wade considered the Whitney
sum bundle E1(M) = (T M × R) ⊕ (T ∗M × R) and introduced the notion of E1(M)-Dirac
structure, extending the Courant bracket to the space of sections of E1(M). But this extended
bracket in not a Courant bracket.

One of the motivations for this paper was a tentative to understand the exact meaning of
the extended bracket introduced by Wade, and to see how it is related to the Courant algebroid
structure. For that, we introduce the notion of a generalized Courant algebroid, which is shown
to include the double of a generalized Lie bialgebroid as a particular case. We then conclude
that the bracket introduced by Wade is the bracket of a generalized Courant algebroid, defined
on E1(M), for the case where T ∗M × R is endowed with the null Lie algebroid structure.

In a very recent paper, Grabowski and Marmo [5] developed a theory of graded Jacobi
brackets which unifies various concepts of graded Lie structures in geometry and physics.
Among them, the notion of Courant–Jacobi algebroid is presented. This notion turns out to be
equivalent to our definition of the generalized Courant algebroid, although our presentation is
different from that of [5], since it is mainly based on the concept of generalized Lie bialgebroid
introduced in [6].

Another purpose of this paper is the study of some Dirac structures for generalized Lie
bialgebroids, such as graphs of bivector fields and characteristic pairs of some sub-bundles.
The case of triangular generalized Lie bialgebroids is also investigated. In [5] the notion of
Dirac structure associated with a Courant–Jacobi algebroid is also mentioned, although it is
not exploited.

The paper is organized as follows. In section 2, we recall some definitions and results
concerning generalized Lie bialgebroids and Jacobi manifolds. In section 3, we introduce
the notion of generalized Courant algebroid, presenting two definitions: the first is a direct
generalization of the definition of Courant algebroid in [17], and the second is obtained from
the first, after reducing the number of axioms. We also prove that the notions of generalized
Courant algebroid and Courant–Jacobi algebroid structures on a vector bundle are equivalent.
In section 4, we prove that the double of a generalized Lie bialgebroid is a generalized Courant
algebroid and we recover, as an example, the E1(M)-Dirac structure introduced by Wade in
[26]. This result is referred to in [5], but it is obtained using different techniques. Sections 5
and 6 are devoted to the presentation of some examples of Dirac structures for generalized Lie
bialgebroids ((A, φ), (A∗,W)). In section 5, we study the graph of a bivector field on A, i.e. a
section of

∧2
A, and we investigate the case of a Jacobi structure (�,E) ∈ �(

∧2
(T M × R))

on M. In section 6, we consider a sub-bundle D ⊂ A and we establish the conditions that
ensure the existence of a Dirac structure on the vector bundle D ⊕ D⊥, where D⊥ is the
conormal bundle of D. Using the notion of characteristic pair [16] of a sub-bundle A, we
obtain another example of a Dirac structure. Finally, in section 7 we consider the Dirac
structure for a triangular generalized Lie bialgebroid.

2. Generalized Lie bialgebroids and Jacobi structures

A Lie algebroid (A, [·, ·], ρ) over a manifold M is a vector bundle A over M together with
a Lie bracket [·, ·] on the space �(A) of the global cross sections of A and a bundle map
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ρ : A → T M , called the anchor, such that if we also denote by ρ : �(A) → X(M) the
homomorphism induced by ρ, then

[X, f Y ] = f [X, Y ] + (ρ(X)f )Y

for all X, Y ∈ �(A) and f ∈ C∞(M, R).
We note that if (A, [·, ·], ρ) is a Lie algebroid over M, then ρ : (�(A), [·, ·]) →

(X(M), [·, ·]) is a Lie algebra homomorphism.

Example 2.1. If M is a differentiable manifold, then the triple (T M, [·, ·], IdT M) is a Lie
algebroid over M, where [·, ·] is the usual Lie bracket of vector fields. A Lie algebroid over a
point is a Lie algebra.

Notation: Throughout this paper, we will use δ to denote the usual differential of de Rham for
the manifold M.

Example 2.2. Let (M,�) be a Poisson manifold and �# : T ∗M → T M the vector bundle
morphism associated with the Poisson tensor � given, for any sections α, β of T ∗M, by

〈β,�#(α)〉 = �(α, β).

Then the triple (T ∗M, [·, ·]�,�#) is a Lie algebroid over M, where [·, ·]� is the Lie bracket
of 1-forms given by

[α, β]� = L�#(α)β − L�#(β)α − δ(�(α, β)). (1)

We recall that a Jacobi structure on a manifold M is a pair (�,E), where � is a bivector
and E is a vector field such that [�,�] = −2E ∧ � and [E,�] = 0, [15].

Example 2.3. Let (M,�,E) be a Jacobi manifold. We denote by (�,E)# : T ∗M × R →
T M × R the vector bundle morphism given by

(�,E)#(α, f ) = (�#(α) + f E,−〈α,E〉) (2)

for any section α of T ∗M and f ∈ C∞(M, R). In opposition to the case of a Poisson manifold,
in general one cannot define a Lie algebroid structure on the cotangent bundle of a Jacobi
manifold. However, if (M,�,E) is a Jacobi manifold, then (T ∗M×R, [·, ·](�,E), π ◦(�,E)#)

is a Lie algebroid over M [10], where π : T M × R → T M is the projection over the first
factor and [·, ·](�,E) is the bracket given by

[(α, f ), (β, g)](�,E) := (γ, r) (3)

with

γ := L�#(α)β − L�#(β)α − δ(�(α, β)) + fLEβ − gLEα − iE(α ∧ β),

r := −�(α, β) + �(α, δg) − �(β, δf ) + 〈f δg − gδf,E〉.
It is well known that, given a Lie algebroid (A, [·, ·], ρ), there exists an associated

differential d on the graded space of sections of
∧

A∗ = ⊕k∈Z

∧k
A∗, where A∗ is the dual

vector bundle of A. More precisely, d is a derivation of degree 1 and of square 0 of the
associative graded commutative algebra (�(

∧
A∗),∧). Also the Lie bracket on �(A) can be

extended to the algebra of sections of
∧

A,�(
∧

A) = ⊕k∈Z�(
∧k

A). The result is a graded
Lie bracket [·, ·] which is called the Schouten bracket of the Lie algebroid1. For more details,
see [11, 18].
1 Some differences in signs with [6, 15] come from different conventions for the Schouten bracket.
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Let (A, [·, ·], ρ) be a Lie algebroid over M and φ ∈ �(A∗) a 1-cocycle for the Lie algebroid
cohomology complex with trivial coefficients (see [6, 18]), i.e. for all X, Y ∈ �(A),

〈φ, [X, Y ]〉 = ρ(X)(〈φ, Y 〉) − ρ(Y )(〈φ,X〉). (4)

Using the 1-cocycle φ, we can define a new representation ρφ of the Lie algebra
(�(A), [·, ·]) on C∞(M, R), by setting

ρφ : �(A) × C∞(M, R) → C∞(M, R) (X, f ) �→ ρφ(X, f ) = ρ(X)f + 〈φ,X〉f. (5)

Therefore, we obtain a new cohomology complex, whose differential cohomology operator is
given by

dφ : �
(∧k

A∗) → �
(∧k+1

A∗) β �→ dφ(β) = dβ + φ ∧ β. (6)

Also, for any X ∈ �(A), the Lie derivative operator with respect to X is given by

Lφ

X : �
(∧k

A∗) → �
(∧k

A∗) β �→ Lφ

X(β) = LXβ + 〈φ,X〉β. (7)

It is also possible to consider a φ-Schouten bracket on the graded algebra �(
∧

A), denoted
by [·, ·]φ , which is defined as follows:

[·, ·]φ : �
(∧p

A
) × �

(∧q
A

) → �
(∧p+q−1

A
)

(P,Q) �→ [P,Q]φ = [P,Q] + (p − 1)P ∧ (iφQ) + (−1)p(q − 1)(iφP ) ∧ Q
(8)

where iφQ can be interpreted as the usual contraction of a multivector field by a 1-form. We
observe that when p = q = 1, [P,Q]φ = [P,Q]. That is, the brackets [·, ·]φ and [·, ·]
coincide on �(A).

We can develop a differential calculus using ρφ, dφ,Lφ and [·, ·]φ . The formulae obtained
are similar, but adapted, to the case of a Lie algebroid (see [4, 6]).

Suppose that the vector bundle (A, [·, ·], ρ) and its dual vector bundle (A∗, [·, ·]∗, ρ∗) are
both Lie algebroids over a manifold M. Let d (resp. d∗) denote the differential of A (resp. A∗).
Let φ ∈ �(A∗) (resp. W ∈ �(A)) be a 1-cocycle in the Lie algebroid cohomology complex of
(A, [·, ·], ρ) (resp. (A∗, [·, ·]∗, ρ∗)).

Definition 2.4 ([6]). The pair ((A, φ), (A∗,W)) is a generalized Lie bialgebroid if for all
X, Y ∈ �(A) and P ∈ �(

∧p
A), the following conditions hold:

dW
∗ [X, Y ] = [dW

∗ X, Y ]φ + [X, dW
∗ Y ]φ; (9)

LW
∗φP + Lφ

WP = 0. (10)

Under the name of Jacobi bialgebroid, this notion was presented in [4], with the following
definition:

Definition 2.5 ([4]). The pair ((A, φ), (A∗,W)) is a Jacobi bialgebroid if for all P ∈ �(
∧p

A)

and Q ∈ �(
∧

A),

dW
∗ [P,Q]φ = [dW

∗ P,Q]φ + (−1)p+1[P, dW
∗ Q]φ. (11)

The equivalence of definitions 2.4 and 2.5 was proved in [4].
When φ = 0 and W = 0, we recover the notion of Lie bialgebroid: definition 2.4

generalizes the original definition introduced in [19] by Mackenzie and Xu, while
definition 2.5 generalizes the equivalent one given by Kosmann-Schwarzbach [11].

The important property of duality of a Lie bialgebroid is also verified in the case of
a generalized Lie bialgebroid: if ((A, φ), (A∗,W)) is a generalized Lie bialgebroid, so is
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((A∗,W), (A, φ)) (see [4, 6]). As a consequence, both definitions 2.4 and 2.5 can be given
using the dual versions of (9)–(10) and (11), respectively.

Example 2.6. Let (M,�,E) be a Jacobi manifold. Consider the associated Lie algebroid
(T ∗M × R, [·, ·](�,E), π ◦ (�,E)#) over M. Its differential d∗ is given for all (P,Q) ∈
�(

∧k
(T M)) ⊕ �(

∧k+1
(T M)), by ([14])

d∗(P,Q) = ([�,P ] + kE ∧ P + � ∧ Q,−[�,Q] + (1 − k)E ∧ Q + [E,P ]). (12)

On the other hand, if M is a differentiable manifold, then the triple (T M × R, [·, ·], π) is
a Lie algebroid over M, where π is the projection over the first factor and [·, ·] is given by

[(X, f ), (Y, g)] = ([X, Y ], X(g) − Y (f )) (X, f ), (Y, g) ∈ X(M) × C∞(M, R). (13)

The associated differential is d = (δ,−δ), δ being the de Rham differential.
In [6] it was proved that φ = (0, 1) (resp. W = (−E, 0)) is a 1-cocycle of T M ×R (resp.

T ∗M × R) and the pair ((T M × R, φ), (T ∗M × R,W)) is a Jacobi bialgebroid.

Another interesting example of a generalized Lie bialgebroid is that provided by strict
Jacobi–Nijenhuis manifolds (see [8, 22]).

When the base manifold of a generalized Lie bialgebroid reduces to a point, we obtain
a generalized Lie bialgebra [6]. In other words, a generalized Lie bialgebra is a pair
((G, φ), (G∗,W)), where (G, [·, ·]) is a real Lie algebra of finite dimension such that

• the dual space G∗ is also a Lie algebra with Lie bracket [·, ·]∗,
• φ ∈ G∗ and W ∈ G are 1-cocycles on G and G∗, respectively and
• dW

∗ [X, Y ] = [dW
∗ X, Y ]φ + [X, dW

∗ Y ]φ, 〈φ,W 〉 = 0, iφ(d∗X) + [W,X] = 0, for all
X, Y ∈ G.

For more details on generalized Lie bialgebras, see [6, 9].

3. Generalized Courant algebroids and Courant–Jacobi algebroids

In this section, we introduce the notion of generalized Courant algebroid. We present first a
definition that generalizes directly the definition of Courant algebroid introduced by Liu et al
in [17]. Then, using [25], we reduce the number of axioms of this definition, to obtain a new
version of it.

For the sake of completeness, we would also like to mention that a generalized Courant
algebroid can be viewed as a particular case of a pure algebraic structure described in [24].

Very recently, the notion of Courant–Jacobi algebroid was introduced by Grabowski and
Marmo in [5], based on the definition of Courant algebroid proposed by Roytenberg [23] and
using some techniques of [25]. We show that the definitions of generalized Courant algebroid
and Courant–Jacobi algebroid are equivalent.

Definition 3.1. A generalized Courant algebroid is a pair (A, θ), where A is a vector bundle
A → M equipped with a nondegenerate symmetric bilinear form (·, ·) on the bundle, a skew-
symmetric bracket [·, ·] on �(A) and a bundle map ρ : A → T M , and θ ∈ �(A∗) is such
that, for any X, Y ∈ �(A), 〈θ, [X, Y ]〉 = ρ(X)〈θ, Y 〉 − ρ(Y )〈θ,X〉, satisfying the following
properties:

1. for any X1, X2, X3 ∈ �(A),

[[X1, X2], X3] + c.p. = DθT (X1, X2, X3) (14)
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2. for any X1, X2 ∈ �(A),

ρ([X1, X2]) = [ρ(X1), ρ(X2)] (15)

3. for any X1, X2 ∈ �(A) and f ∈ C∞(M, R),

[X1, f X2] = f [X1, X2] + (ρ(X1)f )X2 − (X1, X2)Df (16)

4. for any f, g ∈ C∞(M, R),

(Dθf,Dθg) = 0 (17)

5. for any Y,X1, X2 ∈ �(A),

ρ(Y )(X1, X2) + 〈θ, Y 〉(X1, X2) = ([Y,X1] + Dθ (Y,X1),X2)

+ (X1, [Y,X2] + Dθ (Y,X2)) (18)

where T (X1, X2, X3) is the function defined by

T (X1, X2, X3) = 1
3 ([X1, X2], X3) + c.p. (19)

and D,Dθ : C∞(M, R) → �(A) are given, for any X ∈ �(A), respectively by

(Dθf,X) = 1
2 (ρ(X)f + 〈θ,X〉f ) and (Df,X) = 1

2ρ(X)f. (20)

Remark 3.2. When θ = 0, we recover the definition of Courant algebroid, introduced in [17].
If, for any X ∈ �(A), we denote by ρθ (X) the first-order differential operator given by

ρθ (X) = ρ(X) + 〈θ,X〉 (21)

we can replace (18) by

ρθ (Y )(X1, X2) = ([Y,X1] + Dθ (Y,X1),X2) + (X1, [Y,X2] + Dθ (Y,X2)). (22)

Moreover, (15) is equivalent to

ρθ ([X1, X2]) = [ρθ (X1), ρ
θ (X2)] (23)

where the bracket on the right-hand side is the Lie bracket (13) on X(M) × C∞(M, R).

Following the ideas of Uchino [25] let us see that it is possible to reduce the number
of axioms in definition 3.1. Let us assume that conditions 1, 2 and 5 in definition 3.1 hold,
where Dθ is a map from C∞(M, R) to �(A),Dθ : C∞(M, R) → �(A), which is a first-order
differential operator, i.e.,

Dθ (fg) = fDθg + gDθf − fgDθ1 ∀f, g ∈ C∞(M, R).

ByD : C∞(M, R) → �(A) we denote the derivation associated with the first-order differential
operator Dθ , that is Df = Dθf − fDθ1, f ∈ C∞(M, R). Under these conditions, let us
prove the following lemma.

Lemma 3.3. For any X1, X2, Y ∈ �(A) and f ∈ C∞(M, R),

[X1, f X2] = f [X1, X2] + (ρ(X1)f )X2 − (X1, X2)Df. (24)

Proof. From condition 5 in definition 3.1, and using (22), we have

ρθ (X1)(f X2, Y ) = ([X1, f X2] + Dθ (X1, f X2), Y ) + (f X2, [X1, Y ] + Dθ (X1, Y )). (25)

But, since ρθ (X1) is a first-order differential operator,

ρθ (X1)(f X2, Y ) = fρθ (X1)(X2, Y ) + (ρθ (X1)f )(X2, Y ) − f (X2, Y )〈θ,X1〉
= (f [X1, X2] + fDθ (X1, X2), Y ) + (f X2, [X1, Y ] + Dθ (X1, Y ))

+ (X2, Y )(ρ(X1)f ) (26)
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and, taking into account that (·, ·) is nondegenerate, we obtain

[X1, f X2] + Dθ (X1, f X2) = f [X1, X2] + fDθ (X1, X2) + (ρ(X1)f )X2. (27)

The equality

Dθ (X1, f X2) = fDθ (X1, X2) + (X1, X2)Dθf − f (X1, X2)Dθ1

= fDθ (X1, X2) + (X1, X2)Df

and (27) lead directly to (24). �

Now we can give the following definition of generalized Courant algebroid.

Definition 3.4. A generalized Courant algebroid is a pair (A, θ), where A is a vector bundle
A → M equipped with a nondegenerate symmetric bilinear form (·, ·) on the bundle, a
skew-symmetric bracket [·, ·] on �(A) and a bundle map ρθ : A → T M × R, which is a
first-order differential operator, and where θ ∈ �(A∗) is such that, for any X, Y ∈ �(A),
〈θ, [X, Y ]〉 = ρ(X)〈θ, Y 〉 − ρ(Y )〈θ,X〉, ρ(X) being the derivation associated with ρθ (X)

(i.e., ρθ (X) = ρ(X) + 〈θ,X〉), satisfying the following properties:

(i) for any X1, X2, X3 ∈ �(A),

[[X1, X2], X3] + c.p. = DθT (X1, X2, X3) (28)

(ii) for any X1, X2 ∈ �(A),

ρθ ([X1, X2]) = [ρθ (X1), ρ
θ (X2)] (29)

where the bracket on the right-hand side is the usual Lie bracket on �(T M × R);
(iii) for any Y,X1, X2 ∈ �(A),

ρθ (Y )(X1, X2) = ([Y,X1] + Dθ (Y,X1),X2) + (X1, [Y,X2] + Dθ (Y,X2)) (30)

(iv) for any f, g ∈ C∞(M, R),

(Dθf,Dθg) = 0 (31)

where T (X1, X2, X3) is the function defined by

T (X1, X2, X3) = 1
3 ([X1, X2], X3) + c.p. (32)

and Dθ : C∞(M, R) → �(A) is the first-order differential operator given, for all Y ∈ �(A),
by

(Dθf, Y ) = 1
2ρθ (Y )f. (33)

In [5] the authors introduced the following definition of Courant–Jacobi algebroid.

Definition 3.5. A Courant–Jacobi algebroid is a vector bundle A over M together with

1. a nondegenerate symmetric bilinear form (·, ·) on the bundle;
2. a blilinear operation ◦ on �(A) such that, for any X1, X2, X3 ∈ �(A),

X1 ◦ (X2 ◦ X3) = (X1 ◦ X2) ◦ X3 + X2 ◦ (X1 ◦ X3) (34)

3. a bundle map λ : A → T M × R which is a homomorphism into the Lie algebroid of
first-order differential operators:

λ(X ◦ Y ) = [λ(X), λ(Y )] ∀X, Y ∈ �(A) (35)
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satisfying the following properties:

(a) (Y ◦ X,X) = (Y,X ◦ X),

(b) λ(X)(Y, Y ) = 2(X ◦ Y, Y ),

for all X, Y ∈ �(A).

It is noted in [5] that this definition can be formulated in terms of the first-order differential
operator D : C∞(M, R) → �(A) given by

(D(f ),X) = 1
2λ(X)f. (36)

The next two propositions establish the equivalence of definitions 3.4 and 3.5.

Proposition 3.6. If A → M is a Courant–Jacobi algebroid, it is a generalized Courant
algebroid.

Proof. Let [·, ·] denote the skew-symmetrization of the operation ◦ on �(A), i.e.,

[X1, X2] = 1
2 (X1 ◦ X2 − X2 ◦ X1) X1, X2 ∈ �(A).

From (36) we obtain, for all X, Y ∈ �(A),

λ(Y )(X,X) = 2(D(X,X), Y )

and using (a) and (b) in definition 3.5, we write

λ(Y )(X,X) = 2(Y ◦ X,X) = 2(Y,X ◦ X).

Taking into account that (·, ·) is nondegenerate, we get

X ◦ X = D(X,X),

which implies that, for all X1, X2 ∈ �(A),
1
2 (X1 ◦ X2 + X2 ◦ X1) = D(X1, X2)

and so

X1 ◦ X2 = [X1, X2] + D(X1, X2).

We equip �(A) with this skew-symmetric bracket [·, ·].
Let p : T M × R → T M denote the canonical projection over the first factor. We take

ρ = p ◦λ : A → T M and θ = λ∗((0, 1)) ∈ �(A∗), where λ∗ is the transpose of λ and define,
for any X ∈ �(A),

ρθ (X) = ρ(X) + 〈θ,X〉
= p(λ(X)) + 〈(0, 1), λ(X)〉
= λ(X). (37)

In other words, iθ = λ − ρ and λ = ρθ .
Let us observe that condition 3 in definition 3.5 and the fact that (0, 1) ∈ �(T ∗M × R) ≡

�1(M) × C∞(M, R) is a 1-cocycle for the Lie algebroid T M × R over M, ensure that, for
any X, Y ∈ �(A),

〈θ, [X, Y ]〉 = ρ(X)〈θ, Y 〉 − ρ(Y )〈θ,X〉.
At this stage, it is obvious that we must take Dθ = D.

Let us now prove that (i), (ii), (iii) and (iv) in definition 3.4 hold. From (b) in
definition 3.5 we deduce that, for all X, Y1, Y2 ∈ �(A)

λ(X)(Y1, Y2) = (X ◦ Y1, Y2) + (X ◦ Y2, Y1)
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and by the very definition of ◦, we obtain (iii). Now, condition 3 in definition 3.5 gives

ρθ (X ◦ X) = 0 ∀X ∈ �(A),

which implies ρθ ◦ Dθ = 0. So,

ρθ (X1 ◦ X2) = ρθ ([X1, X2]) ∀X1, X2 ∈ �(A)

and (ii) holds. From ρθ ◦ Dθ = 0, we also obtain (iv).
Finally, to prove (i),

[[X1, X2], X3] + c.p. = DθT (X1, X2, X3) ∀X1, X2, X3 ∈ �(A)

we do a computation as in [23]:

0 = (X1 ◦ X2) ◦ X3 + X2 ◦ (X1 ◦ X3) − X1 ◦ (X2 ◦ X3)

= [[X1, X2], X3] + [[X3, X1], X2] + [[X2, X3], X1]

+ [Dθ (X1, X2),X3] + [X2,Dθ (X1, X3)] − [X1,Dθ (X2, X3)]

+ Dθ (X1 ◦ X2, X3) + Dθ (X1 ◦ X3, X2) − Dθ (X2 ◦ X3, X1). (38)

The proof is complete if we show that the sum of the last six terms of (38), that we
denote by A(X1, X2, X3), equals −DθT (X1, X2, X3). For that, we deduce from (b) that, for
all X ∈ �(A), f ∈ C∞(M, R):

X ◦ Dθf = 2Dθ (Dθf,X)

and also

Dθf ◦ X = 0,

which gives

[X,Dθf ] = Dθ (Dθf,X). (39)

Then,

A(X1, X2, X3) = Dθ ([X1, X2], X3) + Dθ (X2, [X1, X3]) − Dθ (X1, [X2, X3])

+ 2Dθ (X2,Dθ (X1, X3)) − 2Dθ (X1,Dθ (X2, X3)). (40)

A similar computation as in [23] shows that A(X1, X2, X3) is completely skew-symmetric
(this proof needs condition (a) in definition 3.5). The fact that A equals its skew-symmetrization
gives the equality A(X1, X2, X3) = −DθT (X1, X2, X3). �

Proposition 3.7. If A → M is a generalized Courant algebroid, then it is a Courant–Jacobi
algebroid.

Proof. Let A be a generalized Courant algebroid and let us define the following operation
on �(A):

X1 ◦ X2 = [X1, X2] + Dθ (X1, X2) ∀X1, X2 ∈ �(A).

We take λ = ρθ ; then D = Dθ . Since we have ρθ ◦Dθ = 0 in a generalized Courant algebroid,
it is obvious that (ii) in definition 3.4 implies 3 in definition 3.5.

In the proof of proposition 3.6, we showed that

X1 ◦ (X2 ◦ X3) = (X1 ◦ X2) ◦ X3 + X2 ◦ (X1 ◦ X3)

⇒ [[X1, X2], X3] + c.p. = DθT (X1, X2, X3).

If we look at the technical details of this proof we see that the implication ⇐ also holds.
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It remains to show that (a) and (b) in definition 3.5 hold. From (iii) in definition 3.4,

ρθ (Y )(X,X) = ([Y,X] + Dθ (Y,X),X) + (X, [Y,X] + Dθ (Y,X))

= 2(Y ◦ X,X) (41)

which is exactly (b).
Finally,

(Y ◦ X,X) = ([Y,X] + Dθ (Y,X),X)
b)= 1

2ρθ (Y )(X,X)

(36)= (Dθ (X,X), Y ) = (X ◦ X, Y ) (42)

and (a) holds. �

A sub-bundle L ⊂ A of the generalized Courant algebroid (A, θ) is said to be integrable
if �(L) is closed under the bracket [·, ·].
Definition 3.8. A Dirac structure for the generalized Courant algebroid (A, θ) is an integrable
sub-bundle L of A which is maximally isotropic with respect to the symmetric bilinear form
(·, ·).

An immediate consequence of the previous definition is the following.

Proposition 3.9. If L is a Dirac structure for the generalized Courant algebroid (A, θ) and
θ ∈ �(L∗), then (L, ρ|L, [·, ·]|L) is a Lie algebroid and θ is a 1-cocycle for the Lie algebroid
cohomology complex with trivial coefficients.

4. Generalized Courant algebroids and generalized Lie bialgebroids

In this section, we will see that the double of a generalized Lie bialgeboid is a generalized
Courant algebroid. This result is referred to in [5] but it is obtained using different techniques.

Suppose that the vector bundle A → M and its dual A∗ → M are both equipped with
Lie algebroid structures ([·, ·], a) and ([·, ·]∗, a∗), respectively. Let d (resp. d∗) denote the
differential of A (resp. A∗) and let φ ∈ �(A∗) (resp. W ∈ �(A)) be a 1-cocycle in the Lie
algebroid cohomology complex of (A, [·, ·], a) (resp. (A∗, [·, ·]∗, a∗)). Moreover, let dφ,Lφ

and [·, ·]φ (resp. dW
∗ ,LW

∗ and [·, ·]W∗ ) be the differential, the Lie derivative and the bracket
modified by the 1-cocycle φ of A (resp. W of A∗) given by (6), (7) and (8), respectively.

On the Whitney sum bundle A⊕A∗ we can define two nondegenerate bilinear forms, one
symmetric, denoted by (·, ·)+, and the other skew-symmetric, denoted by (·, ·)−, by setting,
for any X1 + α1, X2 + α2 ∈ A ⊕ A∗,

(X1 + α1, X2 + α2)+ = 1
2 (〈α1, X2〉 + 〈α2, X1〉) (43)

and

(X1 + α1, X2 + α2)− = 1
2 (〈α1, X2〉 − 〈α2, X1〉) (44)

respectively.
On the space �(A ⊕ A∗) of the global cross sections of A ⊕ A∗, which is identified with

�(A) ⊕ �(A∗), we consider the following bracket (see [5]):

[[X1 + α1, X2 + α2]] = (
[X1, X2]φ + LW

∗α1
X2 − LW

∗α2
X1 − dW

∗ (e1, e2)−
)

+
(
[α1, α2]W∗ + Lφ

X1
α2 − Lφ

X2
α1 + dφ(e1, e2)−

)
(45)

where e1 = X1 + α1 and e2 = X2 + α2.
Using the anchor maps a and a∗, and the 1-cocycles φ and W , we define the vector bundle

maps ρ : A ⊕ A∗ → T M and ρφ+W : A ⊕ A∗ → T M × R, which are given, for any section
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X + α of A ⊕ A∗, by

ρ(X + α) = a(X) + a∗(α) ρφ+W(X + α) = a(X) + a∗(α) + 〈φ,X〉 + 〈α,W 〉 (46)

respectively.

Proposition 4.1. If ((A, φ), (A∗,W)) is a generalized Lie bialgebroid over M, then the pair
(A⊕A∗, θ), with θ = φ + W is a generalized Courant algebroid with the Lie bracket [[·, ·]] on
�(A ⊕ A∗) given by (45), the symmetric bilinear form given by (43), the vector bundle map
ρθ given by (46) and the operator Dθ given by Dθ = (dφ + dW

∗ )|C∞(M,R).

Before proving this proposition, we need the results of the following lemma.

Lemma 4.2. Let ((A, φ), (A∗,W)) be a generalized Lie bialgebroid over M. Then, for any
X ∈ �(A), α ∈ �(A∗) and f, g ∈ C∞(M, R),

(i)

〈φ,W 〉 = 0 a(W) + a∗(φ) = 0

L∗φX + [W,X] = 0 LWα + [φ, α]∗ = 0
(47)

(ii)

[dW
∗ f,X]φ + LW

∗dφf
X = 0 [dφf, α]W∗ + Lφ

dW∗ f
α = 0 (48)

(iii)

(a ◦ dW
∗ + a∗ ◦ dφ)f = 0 (49)

(iv)

[a(X), a∗(α)] = a∗
(
Lφ

Xα
) − a

(
LW

∗αX
)

+ a(dW
∗ (〈α,X〉)) (50)

(v)

〈dφf, dW
∗ g〉 + 〈dφg, dW

∗ f 〉 = 0. (51)

Proof. Conditions (i) and (ii) and (v) were proved in [6], while (iii) can be deduced from (ii).
For (iv), we have

[a(X), a∗(α)](f ) − a∗
(
Lφ

Xα
)
f + a

(
LW

∗αX
)
f

= a(X)(〈α, d∗f 〉) − 〈
Lφ

Xα, d∗f
〉 − a∗(α)〈df,X〉 +

〈
df,LW

∗αX
〉

= 〈α, [X, d∗f ]〉 − 〈φ,X〉(a∗(α)f ) − 〈[α, df ]∗, X〉 + 〈α,X〉(a(X)f )

= 〈α, [X, dW
∗ f ]〉 − f 〈α, [X,W ]〉 + 〈L∗df α,X〉 − 〈φ,X〉(a∗(α)f )

(48)= 〈
α,LW

∗dφf
X

〉 − f 〈α, [X,W ]〉 + 〈L∗df α,X〉 − 〈φ,X〉(a∗(α)f )

= L∗df (〈α,X〉) + 〈α,X〉(a(X)f ) + f 〈α,L∗φX − [X,W ]︸ ︷︷ ︸
=0

〉

= LW
∗df (〈α,X〉) = a(dW

∗ 〈α,X〉)f.

�

Proof of proposition 4.1. First we note that, since φ ∈ �(A∗) and W ∈ �(A) are 1-cocycles
of A and A∗ respectively, and using (i) of lemma 4.2, a straightforward computation shows
that, with θ = φ + W and ρ = a + a∗,

〈θ, [[X1 + α1, X2 + α2]]〉 = ρ(X1 + α1)〈θ,X2 + α2〉 − ρ(X2 + α2)〈θ,X1 + α1〉 (52)

holds for all X1 + α1, X2 + α2 ∈ �(A ⊕ A∗). Moreover, the operator Dθ = (dφ + dW
∗ )|C∞(M,R)

is obviously a first-order differential operator.
Next, we show that all conditions of definition 3.4 hold.
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(i) The proof of condition (i) of definition 3.4 involves a very long computation. We only give
a short schedule, following the ideas of [17]. Let ei = Xi + αi, i = 1, 2, 3, be any sections of
A ⊕ A∗. Then,

([[e1, e2]], e3)+ = [
1
2 (〈α3, [X1, X2]〉 + 〈[α1, α2]∗, X3〉 + a(X3)(e1, e2)−

− a∗(α3)(e1, e2)− + (〈φ,X3〉 − 〈α3,W 〉)(e1, e2)−) + c.p.
]

+ 1
2 (a(e1) + a∗(e1))(e2, e3)+ − 1

2 (a(e2) + a∗(e2))(e3, e1)+

+ 1
2 (〈φ,X1〉 + 〈α1,W 〉)(e2, e3)+ − 1

2 (〈φ,X2〉 + 〈α2,W 〉)(e3, e1)+

= T (e1, e2, e3) + 1
2ρ(e1)(e2, e3)+ − 1

2ρ(e2)(e3, e1)+

+ 1
2 〈θ, e1〉(e2, e3)+ − 1

2 〈θ, e2〉(e3, e1)+. (53)

Furthermore, we can prove the following equality:

([[e1, e2]], e3)− + c.p. = T (e1, e2, e3) + [(a(X3)(e1, e2)− + 2a∗(α3)(e1, e2)−
− 〈[α1, α2]∗, X3〉 + (〈φ,X3〉 + 2〈α3,W 〉)(e1, e2)−) + c.p.]. (54)

Let us set

[[[[e1, e2]], e3]] + c.p. = Y + β

where Y (resp. β) stands for the part of [[[[e1, e2]], e3]] + c.p. that belongs to �(A) (resp.
�(A∗)). Using the formula ([4])

Lφ

X ◦ Lφ

Y = Lφ

[X,Y ] ∀X, Y ∈ �(A) (55)

we deduce

β = {[
Lφ

X1
α2 − Lφ

X2
α1, α3

]
∗ + [dφ(e1, e2)−, α3]∗ + Lφ

LW∗α1
X2−LW∗α2

X1
α3

−Lφ

dW∗ (e1,e2)−
α3 − Lφ

X3
[α1, α2]∗ + dφ([[e1, e2]], e3)−

− dφ(a(X3)(e1, e2)−) − dφ(〈φ,X3〉(e1, e2)−)
}

+ c.p.

= {
dφ[([[e1, e2]], e3)− − (a(X3)(e1, e2)−) − 2(a∗(α3)(e1, e2)−)

+ 〈[α1, α2]∗, X3〉 − (〈φ,X3〉 + 2〈α3,W 〉)(e1, e2)−)] − iX3

(
dφ[α1, α2]∗

−LW
∗α1

dφα2 + LW
∗α2

dφα1
) − [dφ(e1, e2)−, α3]∗ − Lφ

dW∗ (e1,e2)−
α3

}
+ c.p. (56)

By lemma 4.2 (ii),

[dφ(e1, e2)−, α3]∗ + Lφ

dW∗ (e1,e2)−
α3 = 0.

Moreover,

dφ[α1, α2]∗ − LW
∗α1

dφα2 + LW
∗α2

dφα1 = dφ[α1, α2]W∗ − [α1, dφα2]W∗ + [α2, dφα1]W∗ = 0

by the definition of generalized Lie bialgebroid.
So, we obtain

β = dφ[([[e1, e2]], e3)− − (a(X3)(e1, e2)−) − 2(a∗(α3)(e1, e2)−) + 〈[α1, α2]∗, X3〉
− (〈φ,X3〉 + 2〈α3,W 〉)(e1, e2)−)] + c.p.

(54)= dφ(T (e1, e2, e3)). (57)

Similarly, one has

Y = dW
∗ (T (e1, e2, e3)). (58)

From (57) and (58), we conclude that

[[[[e1, e2]], e3]] + c.p. = DθT (e1, e2, e3).
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(ii) For any e1 = X1 + α1, e2 = X2 + α2 ∈ �(A ⊕ A∗), we compute

ρθ ([[X1 + α1, X2 + α2]]) = ρ([[X1 + α1, X2 + α2]]) + 〈θ, [[X1 + α1, X2 + α2]]〉
= a([X1, X2] + LW

∗α1
X2 − LW

∗α2
X1 − dW

∗ (e1, e2)−)

+ a∗
(
[α1, α2]∗ + Lφ

X1
α2 − Lφ

X2
α1 + dφ(e1, e2)−

)
+ 〈θ, [[X1 + α1, X2 + α2]]〉

= [a(X1), a(X2)] + [a∗(α1), a∗(α2)] +
{
a
(
LW

∗α1
X2

) − a∗
(
Lφ

X2
α1

)
− 1

2a(dW
∗ 〈α1, X2〉) + 1

2a∗(dφ〈α1, X2〉)
} − {

a
(
LW

∗α2
X1

) − a∗
(
Lφ

X1
α2

)
− 1

2a(dW
∗ 〈α2, X1〉) + 1

2a∗(dφ〈α2, X1〉)
}

+ 〈θ, [[X1 + α1, X2 + α2]]〉
(49)= [a(X1), a(X2)] + [a∗(α1), a∗(α2)]

+
{
a
(
LW

∗α1
X2

) − a∗
(
Lφ

X2
α1

) − a(dW
∗ 〈α1, X2〉

)}
− {

a
(
LW

∗α2
X1

) − a∗
(
Lφ

X1
α2

) − a(dW
∗ 〈α2, X1〉

)}
+ 〈θ, [[X1 + α1, X2 + α2]]〉.

On the other hand,

[ρθ (X1 + α1), ρ
θ (X2 + α2)] = [ρ(X1 + α1), ρ(X2 + α2)]

+ ρ(X1 + α1)〈θ,X2 + α2〉 − ρ(X2 + α2)〈θ,X1 + α1〉
= [a(X1), a(X2)] + [a∗(α1), a∗(α2)] + [a(X1), a∗(α2)] − [a(X2), a∗(α1)]

+ ρ(X1 + α1)〈θ,X2 + α2〉 − ρ(X2 + α2)〈θ,X1 + α1〉
and, by (50)–(52), we conclude that [ρθ (X1 +α1), ρ

θ (X2 +α2)] = [ρθ (X1 +α1), ρ
θ (X2 +α2)].

(iii) For any sections e1 = X1 + α1, e2 = X2 + α2 and h = Y + β of A ⊕ A∗, we compute

ρθ (h)(e1, e2)+ = ρ(h)(e1, e2)+ + 〈θ, h〉(e1, e2)+

= 1
2a(Y )(〈α1, X2〉 + 〈α2, X1〉) + 1

2a∗(β)(〈α1, X2〉 + 〈α2, X1〉) + 〈θ, h〉(e1, e2)+

(59)

and, taking into account that

(h, e1)+ + (h, e1)− = 〈β,X1〉 and (h, e1)+ − (h, e1)− = 〈α1, Y 〉
([[h, e1]] + Dθ (h, e1)+, e2)+ = 1

2

(〈
[β, α1]W∗ + Lφ

Y α1 − Lφ

X1
β + dφ(〈β,X1〉),X2

〉
+

〈
α2, [Y,X1]φ + LW

∗βX1 − LW
∗α1

Y + dW
∗ (〈α1, Y 〉)〉). (60)

Similarly,

(e1, [[h, e2]] + Dθ (h, e2)+)+ = 1
2

(〈
[β, α2]W∗ + Lφ

Y α2 − Lφ

X2
β + dφ(〈β,X2〉),X1

〉
+

〈
α1, [Y,X2]φ + LW

∗βX2 − LW
∗α2

Y + dW
∗ (〈α2, Y 〉)〉). (61)

Adding up (60) and (61) we obtain, using the equality
〈
Lφ

X1
β,X2

〉 = iX2

(
iX1 dφβ +dφiX1β

)
and its dual version,

([[h, e1]] + Dθ (h, e1)+, e2)+ + (e1, [[h, e2]] + Dθ (h, e2)+)+

= 1
2

{
Lφ

Y (〈α1, X2〉) − iX2

(
iX1 dφβ

)
+ LW

∗β(〈α2, X1〉) − iα2

(
iα1 dW

∗ Y
)

+Lφ

Y (〈α2, X1〉) − iX1

(
iX2 dφβ

)
+ LW

∗β(〈α1, X2〉) − iα1

(
iα2 dW

∗ Y
)}

= 1
2 {a(Y )(〈α1, X2〉 + 〈α2, X1〉) + 〈φ, Y 〉(〈α1, X2〉 + 〈α2, X1〉)
+ a∗(β)(〈α1, X2〉 + 〈α2, X1〉) + 〈β,W 〉(〈α1, X2〉 + 〈α2, X1〉)}

= ρ(h)(e1, e2)+ + 〈θ, h〉(e1, e2)+. (62)

(iv) For any f, g ∈ C∞(M, R), we have

(Dθf,Dθg)+ = 1
2 (〈dφf, dW

∗ g〉 + 〈 dφg, dW
∗ f 〉) (51)= 0.
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The first example of a generalized Courant algebroid which is a double of a generalized
Lie bialgebroid, comes from Jacobi manifolds. As is illustrated by example 2.6, we can
associate with each Jacobi manifold (M,�,E) a generalized Lie bialgebroid

(((T ∗M × R, [·, ·](�,E), π ◦ (�,E)#), (−E, 0)), ((T M × R, [·, ·], π), (0, 1))).

Let us denote by E1(M) the vector bundle over M, (T M × R) ⊕ (T ∗M × R) → M . The
next proposition is an immediate consequence of proposition 4.1. �

Proposition 4.3. If (M,�,E) is a Jacobi manifold, then the pair (E1(M), θ), with
θ = (0, 1) + (−E, 0) ∈ �((E1(M))∗) is a generalized Courant algebroid.

The next example of a generalized Courant algebroid also appears in [5].

Example 4.4. Let us now consider the Lie algebroid (T M × R, [·, ·], π) and its 1-cocycle
φ = (0, 1) ∈ �(T ∗M × R) (see (13)). Its dual vector bundle T ∗M × R is also a Lie algebroid
if we endow the space of sections with an Abelian Lie algebra structure and take the null
anchor map; that is [·, ·]∗ = 0 and ρ∗ = 0. Moreover, the section W = (0, 0) of T M × R

is obviously a 1-cocycle for the Lie algebroid T ∗M × R and, from definitions 2.4 or 2.5,
it is immediate to see that the pair ((T M × R, (0, 1)), (T ∗M × R, (0, 0))) is a generalized
Lie bialgebroid. Therefore, by proposition 4.1, we conclude that the pair (E1(M),ψ), with
ψ = ((0, 1) + (0, 0)) ∈ �((E1(M))∗), is a generalized Courant algebroid.

The explicit expression of the bracket (45) on the space of sections of the generalized
Courant algebroid of the previous example is the following:

[[(X1, f1) + (α1, g1), (X2, f2) + (α2, g2)]] = [(X1, f1), (X2, f2)]
(0,1)

+
(
L(0,1)

(X1,f1)
(α2, g2) − L(0,1)

(X2,f2)
(α1, g1) + d(0,1)(e1, e2)−

)
(63)

with ei = (Xi, fi) + (αi, gi), i = 1, 2, being arbitrary sections of E1(M) and

(e1, e2)− = 1
2 {〈α1, X2〉 − 〈α2, X1〉 + f2g1 − f1g2} (64)

A simple computation gives

L(0,1)

(X1,f1)
(α2, g2) = 〈(0, 1), (X1, f1)〉(α2, g2) + i(X1,f1) d(α2, g2) + d(i(X1,f1)(α2, g2))

= (f1α2, f1g2) + i(X1,f1)(δα2,−δg2) + d(iX1α2 + f1g2, 0)

= (
f1α2 + LX1α2 + g2δf1, f1g2 + X1(g2)

)
(65)

and, analogously,

L(0,1)

(X2,f2)
(α1, g1) = (f2α1 + LX2α1 + g1δf2, f2g1 + X2(g1)). (66)

We also compute

d(0,1)(e1, e2)− = d(e1, e2)− + (0, (e1, e2)−)

= (
1
2δ(〈α1, X2〉 − 〈α2, X1〉 + f2g1 − f1g2),

1
2 (〈α1, X2〉

− 〈α2, X1〉 + f2g1 − f1g2)
)
. (67)

So, from (65), (66) and (67), we obtain

[[(X1, f1) + (α1, g1), (X2, f2) + (α2, g2)]] = ([X1, X2], X1(f2) − X2(f1))

+
(
f1α2 − f2α1 + LX1α2 − LX2α1 + 1

2δ(〈α1, X2〉 − 〈α2, X1〉)
+ 1

2 (f2δg1 − g1δf2 + g2δf1 − f1δg2),X1(g2) − X2(g1)

+ 1
2 (〈α1, X2〉 − 〈α2, X1〉) + 1

2 (f1g2 − f2g1)
)
. (68)
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This is exactly the bracket introduced in the space of sections of E1(M) by Wade in [26]. If
L ⊂ E1(M) is a Dirac structure for the generalized Courant algebroid (E1(M), (0, 1)+ (0, 0)),
then by proposition 3.9, (L, ρ|L, [·, ·]|L) is a Lie algebroid over M; and this is the content of
theorem 3.4 in [26]. Finally, also by proposition 3.9, we have that (0, 1) + (0, 0) ∈ �(L∗) is a
1-cocycle for the Lie algebroid (L, ρ|L, [·, ·]|L). This fact was pointed out in [7].

At this point we can make the following analogy: likewise the bracket introduced by
Courant in [1] is obtained from the bracket in the double T M ⊕ T ∗M of the Lie bialgebroid
(T M, T ∗M) ([19]) in the particular case where T ∗M is endowed with the null Lie algebroid
structure, the bracket introduced by Wade in [26] is obtained from the bracket (45) in the
double E1(M) of the generalized Lie bialgebroid ((T M × R, (0, 1)), (T ∗M × R, (0, 0))), in
the particular case where T ∗M × R is endowed with the null Lie algebroid structure.

5. Dirac structures for generalized Courant algebroids

In this section, we present some examples of Dirac structures for generalized Courant
algebroids which are graphs of bivector fields.

Let ((A, φ), (A∗,W)) be a generalized Lie bialgebroid over M and � a A-bivector field,
i.e. � ∈ �(

∧2
A). Let us denote by �# the associated vector bundle map, �# : A∗ → A, and

by L the graph of �#, considered as a sub-bundle of A ⊕ A∗,

L = {�#α + α, α ∈ A∗}.

Proposition 5.1. The graph of �# is a Dirac structure for the generalized Courant algebroid
(A ⊕ A∗, φ + W) if and only if the Maurer–Cartan type equation

dW
∗ � + 1

2 [�,�]φ = 0 (69)

holds.

Proof. If �#α + α,�#β + β ∈ L = graph �# then, since � is skew-symmetric, we have

(�#α + α,�#β + β)+ = 1
2 (〈α,�#β〉 + 〈β,�#α〉) = 0 (70)

and L is a maximal isotropic sub-bundle of A ⊕ A∗.
It remains to show that L is integrable. Or the bracket (45) is expressed, in this case, for

any sections �#α + α and �#β + β of L, as follows:

[[�#α + α,�#β + β]] = (
[�#α,�#β] + LW

∗α(�#β) − LW
∗β(�#α) + dW

∗ (�(α, β))
)

+
(
[α, β]∗ + Lφ

�#α
β − Lφ

�#β
α − dφ(�(α, β))

)
. (71)

If we denote by [α, β]� the last three terms of (71),

[α, β]� = Lφ

�#α
β − Lφ

�#β
α − dφ(�(α, β)), (72)

then, L is integrable if and only if

[�#α,�#β] + LW
∗α(�#β) − LW

∗β(�#α) + dW
∗ (�(α, β)) = �#([α, β]∗ + [α, β]�). (73)

For any α, β ∈ �(A∗), a straightforward computation leads to

(dW
∗ �)(α, β) = LW

∗α(�#β) − LW
∗β(�#α) + dW

∗ (�(α, β)) − �#([α, β]∗) (74)

and so (73) is equivalent to

[�#α,�#β] + (dW
∗ �)(α, β) = �#([α, β]�). (75)

On the other hand, for any A-bivector field �, the following formula holds (see [13]):

[�#α,�#β] = �#
(
L�#αβ − L�#βα − d(�(α, β))

)
+ 1

2 [�,�](α, β) (76)
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and from (8),
1
2 [�,�]φ(α, β) = 1

2 [�,�](α, β) + (�#φ ∧ �)(α, β). (77)

Using (76) and (77) in (75), we conclude that L is integrable if and only if

�#
(
L�#αβ − L�#βα − d(�(α, β))

)
+ 1

2 [�,�]φ(α, β)

− ((�#φ) ∧ �)(α, β) + (dW
∗ �)(α, β) = �#([α, β]�) (78)

that is, if and only if,

(dW
∗ �)(α, β) + 1

2 [�,�]φ(α, β)

= �#([α, β]�) − �#(L�#αβ − L�#βα − d(�(α, β))) + ((�#φ) ∧ �)(α, β)︸ ︷︷ ︸
=�#([α,β]�)

= 0. (79)

�

Let us now consider the generalized Courant algebroid (E1(M),ψ), with ψ = (0, 1) +
(0, 0)), treated in example 4.4. A section of

∧2
(T M ×R) is, in this case, a pair (�,E) where

� and E are, respectively, a bivector field and a vector field on M. The graph of (�,E)# is a
sub-bundle L of E1(M) whose space of sections is

�(L) = {(�,E)#(α, g) + (α, g), (α, g) ∈ �1(M) × C∞(M, R)}
(2)= {(�#α + gE,−〈α,E〉) + (α, g), (α, g) ∈ �1(M) × C∞(M, R)}. (80)

By proposition 5.1, L is a Dirac structure for the generalized Courant algebroid
(E1(M), (0, 1) + (0, 0)) if and only if

d(0,0)
∗ (�,E)︸ ︷︷ ︸

=0

+ 1
2 [(�,E), (�,E)](0,1) = 0 ⇔ [(�,E), (�,E)](0,1) = 0.

But [(�,E), (�,E)](0,1) = 0 if and only if (M,�,E) is a Jacobi manifold (see [6]). So,
we obtain a characterization of Jacobi manifolds in terms of Dirac structures and we recover a
result from [26]: the graph of (�,E) is a Dirac structure for (E1(M),ψ) if and only if (�,E)

is a Jacobi structure on M.
We recall that two Jacobi structures (�,E) and (�′, E′) on a manifold M are said to be

compatible if their sum is still a Jacobi structure on M [21].

Proposition 5.2. Let (M,�,E) be a Jacobi manifold and (E1(M), θ), with θ = (0, 1) +
(−E, 0) ∈ �((E1(M))∗) the generalized Courant algebroid associated, as in proposition 4.3,
and let (�′, E′) be a section of

∧2
(T M × R). Then, the pair (� + �′, E + E′) =

(�,E) + (�′, E′) determines a Jacobi structure on M if and only if the graph of (�′, E′)
is a Dirac structure for (E1(M), θ). Moreover, (�′, E′) is a Jacobi structure on M, compatible
with (�,E), if and only if

d(−E,0)
∗ (�′, E′) = 0 and [(�′, E′), (�′, E′)](0,1) = 0.

Proof. As we have already remarked, (�,E) + (�′, E′) determines a Jacobi structure on M if
and only if

[(�,E) + (�′, E′), (�,E) + (�′, E′)](0,1) = 0

or equivalently, if and only if

2[(�,E), (�′, E′)](0,1) + [(�′, E′), (�′, E′)](0,1) = 0. (81)
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But, since d(−E,0)
∗ (�′, E′) = [(�,E), (�′, E′)](0,1) (see [6]), equation (81) turns to

d(−E,0)
∗ (�′, E′) + 1

2 [(�′, E′), (�′, E′)](0,1) = 0

which means, by proposition 5.1, that the graph of (�′, E′) is a Dirac structure for (E1(M), θ).
For the last assertion, we have that (�′, E′) is a Jacobi structure on M if and only if

[(�′, E′), (�′, E′)](0,1) = 0. Moreover,

d(−E,0)
∗ (�′, E′) = 0 ⇐⇒ [�,�′] + E ∧ �′ + E′ ∧ � = 0 [E′,�] + [E,�′] = 0

and these are the conditions that assure the compatibility of the Jacobi structures (�,E) and
(�′, E′) (see [21]). �

6. Null Dirac structures and characteristic pairs

Let ((A, φ), (A∗,W)) be a generalized Lie bialgebroid and D ⊂ A a sub-bundle of A. We
denote by D⊥ ⊂ A∗ the conormal bundle of D,

D⊥ = {α ∈ A∗ : 〈α,X〉 = 0,∀X ∈ D}.

Proposition 6.1. The sub-bundle L = D ⊕ D⊥ of A ⊕ A∗ is a Dirac structure for the
generalized Courant algebroid (A⊕A∗, φ +W) if and only if D and D⊥ are Lie subalgebroids
of A and A∗, respectively. In this case, L is said to be a null Dirac structure.

Proof. For any X1 + α1, X2 + α2 ∈ L = D ⊕ D⊥,

(X1 + α1, X2 + α2)± = 1
2 (〈α1, X2〉 ± 〈α2, X1〉) = 0

and L is a maximal isotropic sub-bundle of A ⊕ A∗.
If L is a Dirac structure for (A ⊕ A∗, φ + W), then L is integrable, i.e. L is closed with

respect to the bracket [[·, ·]] given by (45).
For any sections X1 and X2 of D ⊂ L, we compute

[[X1 + 0, X2 + 0]] = [X1, X2] + 0 ∈ �(L).

Therefore, [X1, X2] ∈ �(D) and D is a Lie subalgebroid of A ([18]). An analogous reasoning
shows that D⊥ is a Lie subalgebroid of A∗.

Conversely, let us suppose that D and D⊥ are Lie subalgebroids of A and A∗, respectively.
Since we have, for any sections X1 + α1, X2 + α2 of L,

[[X1 + α1, X2 + α2]] = (
[X1, X2] + LW

∗α1
X2 − LW

∗α2
X1

)
+

(
[α1, α2]∗ + Lφ

X1
α2 − Lφ

X2
α1

)
(82)

for concluding that L is integrable, we only have to verify that LW
∗α1

X2 and LW
∗α2

X1 (resp. Lφ

X1
α2

and Lφ

X2
α1) are sections of D (resp. D⊥). Or, if β is a section of D⊥,〈

β,LW
∗α1

X2
〉 = 〈

β,L∗α1X2
〉
+ 〈α1,W 〉 〈β,X2〉︸ ︷︷ ︸

=0

= a⊥
∗ (α1)(〈β,X2〉) − 〈[β, α1]∗, X2〉

= 0

where a⊥
∗ stands for the anchor of the Lie algebroid D⊥. Therefore, LW

∗α1
X2 ∈ �(D) and, in

the same way, one has LW
∗α2

X1 ∈ �(D). Similarly, one can show that Lφ

X1
α2 and Lφ

X2
α1 are

sections of D⊥. �

Remark 6.2. In [6], the following result was obtained. Let (G, [·, ·]) be a Lie algebra and
Z(G) the centre of G. If r ∈ ∧2 G, X0 ∈ Z(G) and [r, r] − 2X0 ∧ r = 0, then the pair
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((G, 0), (G∗, X0)) is a generalized Lie bialgebra, i.e., a generalized Lie bialgebroid over a
point. The Lie bracket on G∗ is given by

[α, β]∗ = ad∗
r#(α)β − ad∗

r#(β)α − iX0(α ∧ β) (83)

where ad∗ : G × G∗ → G∗ is the coadjoint representation of G on G∗ defined by
(ad∗

Xα)(Y ) = −α([X, Y ]), for X, Y ∈ G and α ∈ G∗. By proposition 4.1 (G ⊕ G∗, 0 + X0) is
a generalized Courant algebroid. We will use this approach in the next example.

Example 6.3. Let G = gl(2, R) be the Lie algebra of the general linear Lie group GL(2, R)

and let

e1 =
(

0 1
0 0

)
e2 =

(
0 0
1 0

)
e3 =

(
1 0
0 −1

)
e4 =

(
1 0
0 1

)

be a basis of G. The Lie bracket on G is defined by

[e1, e2] = e3 [e1, e3] = −2e1 [e2, e3] = 2e2 e4 ∈ Z(G).

If we take r = e1 ∧ e3 +
(
e1 − 1

2e3
) ∧ e4 and X0 = e4, then [r, r] − 2X0 ∧ r = 0 holds. So

the pair ((G, 0), (G∗, e4)) is a generalized Lie bialgebra (see [6]) and its double (G ⊕ G∗, e4)

is a generalized Courant algebroid (over a point).
Let D ⊂ G be the vector space generated by the elements e1 and e3 of G. D is a Lie

subalgebra of G. Let {e∗
1, e

∗
2, e

∗
3, e

∗
4} be a basis of G∗, dual of the basis {e1, e2, e3, e4} of G and

consider the pairing 〈·, ·〉 between G and G∗ given by

〈X,A〉 = Tr(XT A) X ∈ G A ∈ G∗.

Then D⊥ ⊂ G∗ is generated by the elements e∗
2 and e∗

4 of G∗.
Given A,B ∈ D⊥, let us see that [A,B]∗ ∈ D⊥, where [·, ·]∗ is the bracket (83) on G∗,

[A,B]∗ = ad∗
r#(A)B − ad∗

r#(B)A − iX0(A ∧ B).

If Y ∈ D, then (
ad∗

r#(A)B
)
(Y ) = −〈B, [r#(A), Y ]〉 = 0. (84)

In fact, with A ∈ D⊥, one has r#(A) ∈ D and, since D is closed, [r#(A), Y ] ∈ D, which
implies, from (84), that ad∗

r#(A)
B ∈ D⊥. Analogously, ad∗

r#(B)
A ∈ D⊥. Finally,

iX0(A ∧ B) = (Tr(AT X0))B − (Tr(BT X0))A

so iX0(A ∧ B) ∈ D⊥ and we conclude that [A,B]∗ ∈ D⊥. By proposition 6.1,
L = D ⊕ D⊥ ⊂ gl(2, R) ⊕ gl∗(2, R) is a null Dirac structure for the generalized Courant
algebroid (gl(2, R) ⊕ gl∗(2, R), e4).

Let us now recall the notion of characteristic pair, introduced in [16], which provides
Dirac structures generalizing both the case of a graph of a bivector field (treated in the previous
section) and that of a null Dirac structure.

Let A be a vector bundle, D ⊂ A a sub-bundle of A and � a bivector field, � ∈ �(
∧2

A).
Consider the sub-bundle L of A ⊕ A∗, given by

L = {X + �#α + α,X ∈ D,α ∈ D⊥} = D ⊕ graph(�#|D⊥). (85)

Clearly L ⊂ A ⊕ A∗ is maximally isotropic with respect to the symmetric bilinear form
(43). In what follows, we will assume that D = L ∩ A is of constant rank.

Definition 6.4 ([16]). The pair (D,�) is called the characteristic pair of the sub-bundle L of
A ⊕ A∗ given by (85), while D = L ∩ A is called the characteristic sub-bundle of L.
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As is remarked in [16], the restricted bundle map �#|D⊥ is equivalent to a bivector field
on the quotient bundle A/D. Thus, two characteristic pairs (D1,�1) and (D2,�2) determine
the same sub-bundle L defined by (85) if and only if

D1 = D2 = D and �1 − �2 = 0 (mod D)

where by �1 − �2 = 0 (mod D) we mean
(
�#

1α − �#
2α

) ∈ D,∀α ∈ D⊥.
We are interested in characteristic pairs for the case where ((A, φ), (A∗,W)) is a

generalized Lie bialgebroid.

Theorem 6.5. Let ((A, φ), (A∗,W)) be a generalized Lie bialgebroid and L ⊂ A ⊕ A∗ a
maximal isotropic sub-bundle of A ⊕ A∗ defined by a characterisitc pair (D,�), i.e

L = {X + �#α + α,X ∈ D,α ∈ D⊥} = D ⊕ graph(�#|D⊥).

Then L is a Dirac structure for the generalized Courant algebroid (A⊕A∗, φ + W) if and
only if

(i) D is a Lie subalgebroid of A;
(ii) dW

∗ � + 1
2 [�,�]φ = 0 (mod D);

(iii) for any α, β ∈ �(D⊥), [α, β]∗ + [α, β]� ∈ �(D⊥), where [·, ·]� is the bracket (72).

Proof. We only have to verify that the closeness of L is equivalent to conditions (i), (ii) and
(iii).

If X + �#α + α and Y + �#β + β are any sections of L = D ⊕ graph(�#|D⊥), then

[[X + �#α + α, Y + �#β + β]]

= [[X, Y ]] + [[X,�#β + β]] + [[�#α + α, Y ]] + [[�#α + α,�#β + β]]. (86)

Regarding the first term of the second member of equation (86), [[X, Y ]] = [X, Y ] ∈ �(D)

if and only if D is a Lie subalgebroid of A (condition (i)). The second and third terms of
second member of (86) are of the same type.

Or,

[[X,�#β + β]]
(45)= (

[X,�#β] − LW
∗βX

)
+ Lφ

Xβ

= (
[X,�#β] − LW

∗βX − �#(Lφ

Xβ
))

+ �#(Lφ

Xβ
)

+ Lφ

Xβ. (87)

Moreover, for any Z ∈ �(D),〈
Lφ

Xβ,Z
〉 = 〈LXβ,Z〉 + 〈φ,X〉 〈β,Z〉︸ ︷︷ ︸

=0

= a(X)(〈β,Z〉) − 〈β, [X,Z]〉
= −〈β, [X,Z]〉

and so, Lφ

Xβ ∈ �(D⊥) if and only if D is a Lie subalgebroid of A (condition (i)).
In this case, from (87) we deduce that

[[X,�#β + β]] ∈ �(L) if and only if [X,�#β] − LW
∗βX − �#

(
Lφ

Xβ
) ∈ �(D). (88)

With α ∈ �(D⊥), we compute〈
α, [X,�#β] − LW

∗βX − �#
(
Lφ

Xβ
)〉

= −〈α, [�#β,X]〉 − a∗(β)(〈α,X〉) + 〈[β, α]∗, X〉 + a(X)(〈β,�#α〉)
−〈β, [X,�#α]〉 + 〈φ,X〉�(α, β)

= 〈[β, α]∗, X〉 − 〈α, [�#β,X]〉 − 〈β, [X,�#α]〉 + 〈dφ(�(α, β)),X〉
= 〈[β, α]∗ + L�#βα − L�#αβ + dφ(�(α, β)),X〉
= −〈[α, β]∗ + [α, β]�,X〉. (89)
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So (88) is equivalent to

[[X,�#β + β]] ∈ �(L) if and only if [α, β]∗ + [α, β]� ∈ �(D⊥) (90)

(condition (iii)).
For the last term of the second member of equation (86), a straightforward calculation,

using (72), (74), (76) and (77), gives

[[�#α + α,�#β + β]] = (
dW

∗ � + 1
2 [�,�]φ

)
(α, β)

+ �#([α, β]∗ + [α, β]�) + ([α, β]∗ + [α, β]�). (91)

So, we conclude that the bracket (86) is a section of L if and only if the conditions (i), (ii)
and (iii) hold. �

Example 6.6. Let G = R
2 × (R2)∗ × R ∼= R

5 be the Heisenberg Lie algebra, endowed with
the Lie bracket defined, for i, j = 1, 2, by

[ei, ej ] = [ei, ej ] = [ei, h] = [ei, h] = 0 [ei, e
j ] = δijh

where {e1, e2, e
1, e2, h} is a basis of G. With r ∈ ∧2 G and X0 ∈ G given by

r = e1 ∧ e1 + e2 ∧ e2 and X0 = h

the equation [r, r] − 2X0 ∧ r = 0 holds and ((G, 0), (G∗, h)) is a generalized Lie bialgebra (cf
remark 6.2), where the Lie bracket on G∗ is given by (83).

Let D be the vector space generated by the elements e1, e1 and h of G; D is closed
with respect to the Lie bracket [·, ·] on G. Let us denote by {f 1, f 2, f1, f2, h

∗} the basis of
G∗ ∼= (R5)∗, dual of {e1, e2, e

1, e2, h}. If we consider the pairing between G and G∗ as the
usual inner product, then D⊥ ⊂ G∗ is generated by the elements f 2 and f2 of G∗. Moreover,

r#(f i) = ei r#(fi) = −ei r#(h∗) = 0

which implies that Im(r#|D⊥) ⊂ span{e2, e
2}. Let

L = {X + r#(a) + a,X ∈ D, a ∈ D⊥} ⊂ D ⊕ graph(r#|D⊥).

By theorem 6.5, L is a Dirac structure for the generalized Courant algebroid (G ⊕ G∗, 0 + h):

(i) D is a Lie subalgebra of G;
(ii) Since [r, r] − 2X0 ∧ r = 0 holds, it remains to see that (d∗r)(a, b, c) = 0, for

a, b, c ∈ D⊥. Or, if a, b, c ∈ D⊥,
(
ad∗

r#(a)
b
)
(r#(c)) = −〈b, [r#(a), r#(c)]〉 = 0

(because [r#(a), r#(c)] ∈ span{h}) and iX0(a ∧ b)(r#(c)) = 0. So r([a, b]∗, c) = 0,
and analogously, r([a, c]∗, b) = r([b, c]∗, a) = 0, which gives d∗r = 0 (mod D).

(iii) Let a, b ∈ D⊥ and X ∈ D. Then, 〈[a, b]∗ + [a, b]r , X〉 = 2
(
ad∗

r#(a)
b
)
(X) −

2
(
ad∗

r#(b)
a
)
(X) − iX0(a ∧ b)(X) − d(r(a, b))︸ ︷︷ ︸

=0

(X) = 0, and so, [a, b]∗ + [a, b]r ∈ D⊥.

7. Triangular generalized Lie bialgebroids and Dirac structures

In this section, we present a version of theorem 6.5 for the case of a triangular generalized Lie
bialgebroid. First, let us recall some results from [6].

Theorem 7.1 ([6]). Let (A, [·, ·], a) be a Lie algebroid over M,φ ∈ �(A∗) a 1-cocycle and
P ∈ �(

∧2
A) a bivector field such that [P,P ]φ = 0. Then,

(i) (A∗, [·, ·]P , a ◦ P #) is a Lie algebroid over M, where [·, ·]P is the bracket (72) associated
with P;
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(ii) W = −P #(φ) ∈ �(A) is a 1-cocycle;
(iii) the pair ((A, φ), (A∗,W)) is a generalized Lie bialgebroid.

Definition 7.2 ([6]). A generalized Lie bialgebroid ((A, φ), (A∗,W)) is said to be a triangular
generalized Lie bialgebroid if there exists P ∈ �(

∧2
A) such that [P,P ]φ = 0, the Lie bracket

on �(A∗) is [·, ·]P , the anchor on A∗ is (a◦P #) and the 1-cocycle W is given by W = −P #(φ).
We will denote by ((A, φ), (A∗,W), P ) a triangular generalized Lie bialgebroid.

Example 7.3 ([6]). Let (M,�,E) be a Jacobi manifold. Then ((T M × R, (0, 1)), (T ∗M ×
R, (−E, 0)), (�,E)) is a triangular generalized Lie bialgebroid. In fact,

• [(�,E), (�,E)](0,1) = 0, because (M,�,E) is a Jacobi manifold;
• for all sections (α, f ) and (β, g) of T ∗M × R,

[(α, f ), (β, h)](�,E) = L(0,1)

(�,E)#(α,f )
(β, g) − L(0,1)

(�,E)#(β,g)
(α, f )

− d(0,1)((�,E)((α, f ), (β, g))) (92)

• the anchor is π ◦ (�,E)#;

• −(�,E)#(0, 1)
(2)= (−E, 0) = W.

Proposition 7.4. Let ((A, φ), (A∗,W), P ) be a triangular generalized Lie bialgebroid and
L ⊂ A ⊕ A∗ a maximal isotropic sub-bundle of A ⊕ A∗ defined by a characteristic pair
(D,�), i.e. L = D ⊕ graph(�#|D⊥). Then L is a Dirac structure for the generalized Courant
algebroid (A ⊕ A∗, φ + W) if and only if

(1) D is a Lie subalgebroid of A;
(2) [P + �,P + �]φ = 0 (mod D);
(3) for any Y ∈ �(D),Lφ

Y (P + �) = 0 (mod D).

Proof. We will show that conditions (2) and (3) are equivalent to (ii) and (iii) of theorem 6.5,
respectively. For any bivector field � ∈ �(

∧2
A), we have dW

∗ � = [P,�]φ . Moreover,

[P + �,P + �]φ = 2[P,�]φ + [�,�]φ

and so we have

dW
∗ � + 1

2 [�,�]φ = [P,�]φ + 1
2 [�,�]φ

= 1
2 [P + �,P + �]φ (93)

which proves the equivalence of (2) and (ii) of theorem 6.5.
On the other hand, for any sections α and β of A∗, it is immediate to verify that

[α, β]P +� = [α, β]P + [α, β]�

where [·, ·]P +� and [·, ·]� are the brackets (72) defined by the bivector fields P + � and �,
respectively, and [·, ·]P , also given by (72), is the Lie bracket on �(A∗).

If Y is any section of D then, from (89) we deduce

〈[α, β]P + [α, β]�, Y 〉 = 〈
β, [Y,�#α] − LW

∗αY − �#
(
Lφ

Y α
)〉

(94)

where [·, ·]P plays the role of [·, ·]∗. Taking into account that 〈[α, β]P , Y 〉 = −〈
β,LW

∗αY
〉

we

obtain, for any � ∈ �(
∧2

A),

〈[α, β]�, Y 〉 = 〈
β, [Y,�#α] − �#

(
Lφ

Y α
)〉
. (95)

For P + � ∈ �(
∧2

A), (95) becomes

〈[α, β]P +�, Y 〉 = 〈
β, [Y, (P + �)#α] − (P + �)#

(
Lφ

Y α
)〉
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or, equivalently,

〈[α, β]P +�, Y 〉 = 〈
β,

(
Lφ

Y (P + �)
)#

α
〉
. (96)

Then we conclude that

[α, β]P +� = [α, β]P + [α, β]� ∈ �(D⊥) ⇔ Lφ

Y (P + �) = 0 (mod D).

�
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